ojeg o

Technology

General concepts

KISS
Anyone should be able to use your APl without having to refer to the documentation.
* Use standard, concrete and shared terms, not your specific business terms or acronyms.
* Never allow application developers to do things more than one way.
* Design your API for your clients (Application developers), not for your data.
» Target major uses cases first, deal with exceptions later.
GET /orders, GET /users, GET /products, ...

CURL

You should use CURL to share examples, which can be easily copy/paste.

CURL —X POST \

-H "Accept: application/json" \

-H "Authorization: Bearer at-80003004-19a8-46a2-908e-33d4057128e7" \
-d '{"state":"running"}"' \
https://api.fakecompany.com/vl/users/007/orders?client_ id=API_KEY_ 003

URLs

Nouns

You should use nouns, not verbs (vs SOAP-RPC).
GET /orders not /getAllOrders

Plurals

You should use plural nouns not singular nouns to manage two different types of resources :
« Collection resource : /users
* Instance resource : /users/007

You should remain consistent.

GET /users/007 not GET /user/007

Consistent case
You may choose between snake_case or camelCase for attributes and parameters, but you should
remain consistent.

GET /orders?id user=007
POST/orders {"id user":"007"}

or GET /orders?idUser=007
or POST/orders {"idUser":"007"}

If you have to use more than one word in URL, you should use spinal-case (some servers ignore case).
POST /specific-orders

Versioning
You should make versioning mandatory in the URL at the highest scope (major versions).

You may support at most two versions at the same time (Native apps need a longer cycle).
GET /vl1/orders

Hierarchical structure
You should leverage the hierarchical nature of the URL to imply structure (aggregation or composition).

Ex : an order contains products.
GET /orders/1234/products/1

©2014 OCTO Technology

RESTful API Design — OCTO Quick Reference Card

AUDIENCE : APl DESIGNERS — APl DEVELOPERS

"id":"007",
"firstname":"James",
"name":"Bond",

Medium grained resources
You should use medium grained, not fine nor coarse.
Resources shouldn’t be nested more than two level deep :

GET /users/007 "street":"H.Ferry Rd.",

--"country":{"name":"London"}

You may consider the following five subdomains
* Production - https://api.fakecompany.com
* Tests- https://api.sandbox.fakecompany.com
* Developer portal - https://developers.fakecompany.com
* Production - https://oauth2.fakecompany.com
» Tests - https://oauth2.sandbox.fakecompany.com

Security : OAuth2 & HTTPS
You should use OAuth2 to manage Authorization.

* OAuth2 matches 99% of requirements and client typologies, don't reinvent the wheel, you'll fail.
You should use HTTPS for every API/OAuth2 requests.

CRUD-like operations : Use HTTP verbs for CRUD operations (Create/Read/Update/Delete).

HTTP Verb | Collection : /orders Instance : /orders/{id}

GET Read a list orders. 200 OK. Read the detail of a single order. 200 OK.
POST Create a new order. 201 Created. -

Full Update : 200 OK./ Create a specific order :
201 Created.

Partial Update. 200 OK.
Delete order. 204 OK.

PUT

PATCH o
DELETE s

POST is used to Create an instance of a collection. The ID isn’t provided, and the new resource location is
returned in the “Location” Header.

POST /orders {"state":"running", "id user":"007"}

201 Created

Location: https://api.fakecompany.com/orders/1234

But remember that, if the ID is specified by the client, PUT is used for Create.
PUT /orders/1234
201 Created

PUT is used for Update to perform a full replacement.
PUT /orders/1234 {"state":"paid", "id_user":"007"}
200 Ok

PATCH is commonly used for partial Update.
PATCH /orders/1234 {"state":"paid"}
200 Ok

GET is used to Read an instance.
GET /orders/1234
200 Ok
{"id":"1234", "state":"paid"}

GET is used to Read a collection.

GET /orders

200 Ok

[{"id":"1234", "state":"paid"}
{"id":"5678", "state":"running"}]

www.octo.com

ojeg o

Technology

Query strings

Search

You may use the “Google way” to perform a global search on multiple resources.
GET /search?g=running+paid

Filters

You should use ‘?’ to filter resources

GET /orders?state=payed&id_user=007

or (multiple URIs may refer to the same resource)
GET /users/007/orders?state=paied

Pagination

You may use a range query parameter. Pagination is mandatory : a default pagination has to be
defined, for example : range=0-25.

The response should contains the following headers : Link, Content-Range, Accept-Range.
Note that pagination may cause some unexpected behavior if many resources are added.
/orders?range=48-55

206 Partial Content

Content-Range: 48-55/971

Accept-Range: order 10

Link : <https://api.fakecompany.com/vl/orders?range=0-7>; rel="first",
<https://api.fakecompany.com/vl/orders?range=40-47>; rel="prev",
<https://api.fakecompany.com/vl/orders?range=56-64>; rel="next",
<https://api.fakecompany.com/vl/orders?range=968-975>; rel="last"

Partial responses
You should use partial responses so developers can select information needed and optimize bandwidth
(essential for mobile development).
GET /users/007?fields=firstname,name,address(street)
200 OK
{ "id":"007",

"firstname":"James",

"name":"Bond",

address:{"street":"Horsen Ferry Road"}

Sort

Use ?sort =atributel,atributeN to sort resources. By default resources are sorted in ascending order.
Use ?desc=atributel,atributeN to sort resources in descending order

GET /restaurants?sort=rating,reviews,name;desc=rate,reviews

URL reserved words : first, last, count
Use /first to get the 15t element

GET /orders/first

200 OK

{"id":"1234", "state":"paid"}

Use /last to retrieve the latest resource of a collection
GET /orders/last

200 OK

{"id":"5678", "state":"running"}

Use /count to get the current size of a collection
GET /orders/count
200 OK

{"2"}

©2014 OCTO Technology

RESTful API Design — OCTO Quick Reference Card

AUDIENCE : APl DESIGNERS — APl DEVELOPERS

Other key concepts

Content negotiation

Content negotiation is managed only in a pure RESTful way. The client asks for the requierd content, in
the Accept Header, in order of preference. Default format is JSON.

Accept: application/json, text/plain not /orders.json

118N
Use ISO 8601 standard for Date/Time/Timestamp : 1978-05-10T06:06:06+00:00 Or 1978-05-10

Add support for different Languages.
Accept-Language: fr-ca, fr-fr not ?language=fr

Cross-origin requests
Use CORS standard to support REST API requests from browsers (js SPA...).
But if you plane to support Internet Explorer 7/8 or 9, you shall consider specifics endpoints to add a
Jsonp support.
¢ All requests will be sent with a GET method!
¢ Content negotiation cannot be handled with Accept Header in Jsonp.
* Payload cannot be used to send data.

POST /orders and
GET /orders and
GET /orders/1234 and
PUT /orders/1234 and

/orders.jsonp?method=POST&callback=foo
/orders. jsonp?callback=foo
/orders/1234.jsonp?callback=foo
/orders/1234.jsonp?method=PUT&callback=foo

Warning : a web crawler could easily damage your application with a method parameter. Make sure that
an OAuth2 access_token is required, and an OAuth?2 client_id as well.

HATEOAS

Your API should propose Hypermedia links in order to be completely discoverable. But keep in mind that
a majority of users wont probably use those hyperlinks (for now), and will read the API documentation
and copy/paste call examples.

So, each call to the API should return in the Link Header every possible state of the application from the
current state, plus self.

You may use RFC5988 Link notation to implement HATEOAS :

GET /users/007

< 200 Ok

< { "id":"007", "firstname":"James",...}

< Link : <https://api.fakecompany.com/vl/users>; rel="self"; method:"GET",
<https://api.fakecompany.com/vl/addresses/42>; rel="addresses"; method:"GET",
<https://api.fakecompany.com/v1l/orders/1234>; rel="orders"; method:"GET"

“Non Resources” scenarios

In a few use cases we have to consider operations or services rather than resources.
You may use a POST request with a verb at the end of the URI

POST /emails/42/send

POST /calculator/sum [1,2,3,5,8,13,21]

POST /convert?from=EUR&to=USD&amount=42

WwWw.octo.com

ojeg o

HTTP Status codes

You must use adequate HTTP status code.

RESTful API Design — OCTO Quick Reference Card AUDIENCE : API DESIGNERS — API DEVELOPERS

You may use OAuth2 standard notation : http://tools.ietf.org/html/rfc6749#page-45
Keep it simple : you shouldn’t try to use all HTTP status code, but only the TOP 12.

200 OK.

201 Created.

SUCCESS 202 Accepted.
204 No Content.

206 Partial Content.

400 Bad request.

401 Unauthorized.

CLIENT ERROR

403 Forbidden.

404 Not Found.

405 Method not allowed.

406 Not Acceptable.

EERVERERROR 500 Internal server Error.

©2014 OCTO Technology

Basic success code. Works for the general case. Especially used on successful first GET requests, or PUT/PATCH updated content.

Indicates that a resource was created. Typically responding to PUT and POST request.

Indicates that the request has been accepted for processing. Typically responding to an asynchronous processing call (for a better UX and good performances).
The request succeeded but there’s really nothing to show. Usually sent after a successful DELETE.

The returned resource is incomplete. Typically used with paginated resources.

General error for any request (if it doesn’t fit in any other). A good practice will be to manage two kind of errors: request behavior errors, and application condition
errors.

Request behavior error example:
GET /users?payed=1
< 400 Bad Request

< {"error": "invalid_request", "error_description": "There is no ‘payed’ property on users."}

Application condition error example:
POST /users

{"name": "John Doe”"}

< 400 Bad Request

< {"error": "invalid_user", "error_description": "A user must have an email adress"}

| don’t know you, tell me who you are and | will check your permission.

GET /users/42/orders

<401 Unauthorized

< {"error": "no_credentials", "error_description": "This resource is under permission, you must be authenticated with the right rights to have access to it"}

Your credentials rights aren’t sufficient to access this resource.
GET /users/42/orders
<403 Forbidden

< {"error": "not_allowed", "error_description": "You’re not allowed to perform this request"}

The resource you're requesting doesn’t exist

GET /users/999999

< 400 Not Found

< {"error": "not_found", "error_description": "The user with the id ‘999999’ doesn’t exist"}

Either it doesn’t make sense to call such a method on this resource or the authenticated user doesn’t have the right to do it.
POST /users/8000

< 405 Method Not Allowed

< {"error":"method_does_not_make_sense

", "error_description":"How would you even post a person?"}

There’s nothing to send that matches the Accept-* headers of the request. For example, you requested a resource in XML and the resource is only available in JSON.
This also works for i18n

GET /users

Accept: text/xml

Accept-Language: fr-fr

< 406 Not Acceptable

< Content-Type: application/json

< {"error": "not_acceptable", "available_languages":["us-en", "de", "kr-ko"]}

The request call is right, but a problem is encountered. The client can’t really do anything about that, so we suggest to return a 500 status code.
GET /users

<500 Internal server error

< Content-Type: application/json

< {"error":"server_error", "error_description":"Oops! Something went wrong... "}

WwWw.octo.com

CTO RESTful API Design — OCTO Quick Reference Card AUDIENCE : API DESIGNERS — API DEVELOPERS

Technology

DISCLAMER

This Reference Card doesn’t claim to be absolutely accurate. The design concepts
exposed result from our pervious work in the REST area. Please check out our blog
http://blog.octo.com, and feel free to comment/challenge this API cookbook. We
are really looking forward to sharing with you.

One more thing
We encourage you to be pragmatic, for the benefit of your customers...

Application developers.

Sources

Design Beautiful REST + JSON APIs

> http://www.slideshare.net/stormpath/rest-jsonapis

Web API Design: Crafting Interfaces that Developers Love

> https://pages.apigee.com/web-api-design-website-h-ebook-registration.html T 9 C h n O O e y

HTTP API Design Guide
> https://github.com/interagent/http-api-design

RESTful Web APIs
> http://shop.oreilly.com/product/0636920028468.do

O

THERE is
A BETTER WAY

Nous réalisons des missions de conseil IT et nous développons
vos applications stratégiques... Différemment.

©2014 OCTO Technology WwWw.octo.com

